

Technical Division

ERRATA ANSI/AGMA 6123-C16 November 2016

The following editorial correction has been recorded for ANSI/AGMA 6123-C16, *Design Manual for Enclosed Epicyclic Gear Drives*.

In Table 7, the value of K_{ν} for Application Level 2-6 planets should be 1.38 instead of 1.44.

The change, discovered after publication, will be incorporated into the next revision of this document.

Users of ANSI/AGMA 6123-C16 are advised to mark up their copy of the standard as shown below.

Application level ^{1), 3), 4), 5)}		Number of planets, N _{CP}								Flexible mounts ³⁾
		2	3	4	5	6	7	8	9	
1	K _γ	1.16	1.23	1.32	1.35	1.38	1.47	1.52	~	without
2	Kγ	1.00	1.05	1.25	1.35	1.38 1.44	1.47	1.52	1.61	without
3	K _γ	1.00	1.00	1.15	1.19	1.23	1.27	1.30	1.33	without
4	K _γ	1.00	1.00	1.08	1.12	1.16	1.20	1.23	1.26	with
²⁾ Gear reduc	ed load va	2 3 & 4 ring quality riations thr	moderate high qua has an inf ough each	e quality, i. lity, high s luence on planet me	peed, gas the load s sh.	ercial marin turbine/ge haring per	ne, non-mi nerator dri formance o	litary, wind ves, militai of the plan	ry marine. ets. Higher	gear quality results in I sharing. See 9.2.
ⁱ⁾ Load place thickn	sharing at nent of the	application planet on on of the p	level 2 or the carrier lanets shou	higher req with respe uld be com	uires at lea ect to the ta patible wit	ast one floa angential p h quality c	ating mem placement	ber, and th of the plan	at the total ets on the o	tangential tolerance of carrier and the tooth

Table 7 – Mesh load factor for the heaviest loaded planet

⁵⁾ Load sharing level 3 or higher requires a flexible ring gear.

⁶⁾ Values shown may not be conservative enough for applications where the mass of any floating element is high in relation to the speed and radial forces required to accelerate the floating elements are significant.

⁷⁾ The values specified in Table 7 are intended to represent an approximation of the worst torque load case K_{γ} values. At torques significantly lower than the worst case torque load K_{γ} rises significantly above table values. This may be important in design for fatigue; in such cases use of more sophisticated methods such as those found in Annex I may be warranted.